TS. PHÙNG VĂN PHÚC

TS. PHÙNG VĂN PHÚC 3

LÝ LỊCH SƠ LƯỢC

Họ và tên: PHÙNG VĂN PHÚC
Năm sinh: 1986 
Học vị: Tiến sĩ
Năm, nước nhận học vị: 2016, Bỉ
Google scholar: https://scholar.google.com.vn/citations?user=fOPiziAAAAAJ&hl=en
Liên hệ: pv.phuc86@hutech.edu.vn

QUÁ TRÌNH ĐÀO TẠO

Đại học
Nơi đào tạo: Trường Đại học Sư Phạm Kỹ Thuật Tp. HCM
Ngành học: Cơ tin kỹ thuật            
Năm tốt nghiệp: 2009

Sau đại học
Thạc sĩ chuyên ngành: Cơ học kỹ thuật
Năm cấp bằng: 2012
Nơi đào tạo: Trường Đại học Sư Phạm Kỹ Thuật Tp. HCM

Tiến sĩ chuyên ngành: Cơ học tính toán                                      
Năm cấp bằng: 2016
Nơi đào tạo: Đại học Ghent, Vương quốc Bỉ
Tên luận án: Isogeometric analysis for smart plate structures

ĐỀ TÀI NGHIÊN CỨU KHOA HỌC CÁC CẤP 

TT Tên đề tài nghiên cứu Năm bắt đầu/Năm hoàn thành Đề tài cấp (NN, Bộ, ngành, trường) Trách nhiệm tham gia trong đề tài
1 Phân tích áp điện-áp điện từ cho kết cấu micro/nano flexo 2024 - 2026
 
Cấp nhà nước (Nafosted) Chủ nhiệm đề tài
2 Tối ưu hóa tính toán kết cấu nano xốp 2019 - 2021 Cấp nhà nước (Nafosted) Chủ nhiệm đề tài
3 Nghiên cứu và phát triển phương pháp phần tử hữu hạn trơn cho mô hình và mô phỏng các bài toán tương tác trong môi trường đa vật lý 2010 - 2012 Cấp nhà nước (Nafosted) Nghiên cứu viên chính
4 Phát triển phương pháp phần tử hữu hạn trơn cho bài toán tương tác rắn lỏng 2010 - 2012 Cấp trường Chủ nhiệm đề tài
 

CÔNG BỐ KHOA HỌC 

TT Tên công trình, tên tạp chí, năm công bố
2.1 Trị số khoa học:
- Theo google scholar: h-index: 43, trích dẫn: 4528 (cập nhật 04/07/2024)
https://scholar.google.com.vn/citations?user=fOPiziAAAAAJ&hl=en
- Theo Scopus: h-index: 41, trích dẫn: 4080
http://www.scopus.com/authid/detail.url?authorId=55181714100
2.2 Giải thưởng, thành tựu khoa học
- Giải thưởng tài năng Cơ học trẻ Nguyễn Văn Đạo, 2024
- 2 năm liền “Best Rising Stars of Science in the World”, 2022 - 2023
- 2 năm liền top 1% thế giới chuyên ngành “Mechanical and Aerospace Engineering”, 2022 - 2023
- Giải thưởng bài báo xuất xắc nhất “EABE Best Paper Awards 2023” dành cho các bài báo xuất sắc có tác động khoa học nhất trong vòng ba năm 2020-2022
- 5 năm liền top 100.000 nhà khoa học ảnh hưởng nhất thế giới, 2019-2023
- Top 1% chuyên gia bình duyệt thế giới, 2018 - 2019
2.3 Sách
1 Nguyen-Xuan Hung, Phung-Van Phuc, Timon Rabczuk. Proceedings of the International Conference on Advances in Computational Mechanics 2017. Lecture Notes in Mechanical Engineering, Springer Singapore, 2018.
http://www.springer.com/br/book/9789811071485
2.4 Bài báo thuộc danh mục ISI (Web of Science)
74 P. Phung-Van, PT. Hung, CH. Thai. Small-dependent nonlinear analysis of functionally graded triply periodic minimal surface nanoplates. Composite Structures 2024; 335, 117986 (Q1, IF: 6.3)
https://www.sciencedirect.com/science/article/abs/pii/S0263822324001144
73 P. Phung-Van, H. Nguyen-Xuan, PT. Hung, M. Abdel-Wahab, CH. Thai. Nonlocal strain gradient analysis of honeycomb sandwich nanoscale plates. Thin-Walled Structures 2024; 198, 111746 (Q1, IF: 6.4)
https://www.sciencedirect.com/science/article/abs/pii/S0263823124001897
72 PT. Hung, H. Nguyen-Xuan, P. Phung-Van, CH. Thai. Modified strain gradient analysis of the functionally graded triply periodic minimal surface microplate using isogeometric approach. Engineering with Computers 2024 (Q1, IF: 8.7)
https://link.springer.com/article/10.1007/s00366-023-01942-4
71 CH. Thai, PT. Hung, H. Nguyen-Xuan, P. Phung-Van. A free vibration analysis of carbon nanotube reinforced magneto-electro-elastic nanoplates using nonlocal strain gradient theory. Finite Elements in Analysis and Design 2024; 236, 104154 (Q1, IF: 3.5)
https://www.sciencedirect.com/science/article/abs/pii/S0168874X24000489?dgcid=rss_sd_all
70 PT. Hung, CH. Thai, P. Phung-Van. Isogeometric free vibration of functionally graded porous magneto-electro-elastic plate reinforced with graphene platelets resting on an elastic foundation. Computers & Mathematics with Applications 2024; 169, 68-87 (Q1, IF: 2.9)
https://www.sciencedirect.com/science/article/abs/pii/S0898122124002736
69 PT. Hung, CH. Thai, P. Phung-Van. Isogeometric free vibration of honeycomb sandwich microplates with the graphene nanoplatelets reinforcement face sheets. Engineering Structures 2024; 305, 117670 (Q1, IF: 5.6)
https://www.sciencedirect.com/science/article/abs/pii/S0141029624002323
68 P. Phung-Van, LB. Nguyen, PT. Hung, H. Nguyen-Xuan, CH Thai. Nonlocal nonlinear analysis of functionally graded piezoelectric porous nanoplates. International Journal of Mechanics and Materials in Design 2024 (Q2, IF: 2.7)
https://link.springer.com/article/10.1007/s10999-023-09701-5
67 P. Phung-Van, H. Nguyen-Xuan, PT. Hung, CH. Thai. Nonlinear isogeometric analysis of magneto-electro-elastic porous nanoplates. Applied Mathematical Modelling 2024; 128, 331-346 (Q1, IF: 5.0)
https://www.sciencedirect.com/science/article/pii/S0307904X24000180
66 P. Phung-Van, PT. Hung, H. Nguyen-Xuan, CH. Thai. Small scale analysis of porosity-dependent functionally graded triply periodic minimal surface nanoplates using nonlocal strain gradient theory. Applied Mathematical Modelling 2024; 127, 439-453 (Q1, IF: 5.0)
https://www.sciencedirect.com/science/article/pii/S0307904X23005528
65 CH. Thai, PT. Hung, H. Nguyen-Xuan, P. Phung-Van. A meshfree method for functionally graded triply periodic minimal surface plates. Composite Structures 2024; 117913 (Q1, IF: 6.3)
https://www.sciencedirect.com/science/article/pii/S0263822324000412
64 PT. Hung, CH. Thai, P. Phung-Van. Isogeometric bending and free vibration analyses of carbon nanotube-reinforced magneto-electric-elastic microplates using a four variable refined plate theory. Computers & Structures 2023; 287, 107121 (Q1, IF: 4.7)
https://www.sciencedirect.com/science/article/pii/S0045794923001517
63 PT. Hung, CH. Thai, P. Phung-Van. A C0-HSDT free vibration of magneto-electro-elastic functionally graded porous plates using a moving Kriging meshfree method. Aerospace Science and Technology 2023; 137, 108266 (Q1, IF: 5.457)
https://www.sciencedirect.com/science/article/pii/S1270963823001633
62 PT. Hung, P. Phung-Van, CH. Thai. Small scale thermal analysis of piezoelectric–piezomagnetic FG microplates using modified strain gradient theory. International Journal of Mechanics and Materials in Design 2023; 1-23 (Q2, IF: 3.561)
https://link.springer.com/article/10.1007/s10999-023-09651-y
61 LB. Nguyen, H. Nguyen-Xuan, CH. Thai, P. Phung-Van. A size-dependent effect of smart functionally graded piezoelectric porous nanoscale plates. International Journal of Mechanics and Materials in Design 2023; 1-14 (Q2, IF: 3.561)
https://link.springer.com/article/10.1007/s10999-023-09660-x
60 CH. Thai, AMJ. Fereira, H. Nguyen-Xuan, PT. Hung, P. Phung-Van. A nonlocal strain gradient isogeometric model for free vibration analysis of magneto-electro-elastic functionally graded nanoplates. Composite Structures 2023; 316, 117005 (Q1, IF: 6.603)
https://www.sciencedirect.com/science/article/abs/pii/S0263822323003495
59 NV. Nguyen, KQ. Tran, P. Phung-Van, J. Lee, H. Nguyen-Xuan. An isogeometric analysis of functionally graded triply periodic minimal surface microplates. Aerospace Science and Technology 2023; 137, 108270 (Q1, IF: 5.457)
https://www.sciencedirect.com/science/article/abs/pii/S1270963823001670
58 P. Phung-Van, Chien H. Thai. A novel size-dependent nonlocal strain gradient isogeometric model for functionally graded carbon nanotube-reinforced composite nanoplates. Engineering with Computers 2022; (Q1, IF: 7.555)
https://link.springer.com/article/10.1007/s00366-021-01353-3
57 Chien H. Thai, H. Nguyen-Xuan, P. Phung-Van. Nonlocal strain gradient analysis of FG GPLRC nanoscale plates based on isogeometric approach. Engineering with Computers 2022; (Q1, IF: 7.555)
https://link.springer.com/article/10.1007/s00366-022-01689-4
56 PT Hung, Chien H. Thai, P. Phung-Van. NURBS-based refined plate theory for metal foam plates with porosities. Thin-Walled Structures 2022; 175:109246 (Q1, IF: 5.881)
https://www.sciencedirect.com/science/article/pii/S0263823122001975
55 PT Hung, Chien H. Thai, P. Phung-Van. A refined isogeometric plate analysis of porous metal foam microplates using modified strain gradient theory. Composite Structures 2022; 289:115467 (Q1, IF: 7.963)
https://www.sciencedirect.com/science/article/pii/S0263822322002604
54 Chien H. Thai, H. Nguyen-Xuan, P. Phung-Van. A size-dependent isogeometric analysis of laminated composite plates based on the nonlocal strain gradient theory. Engineering with Computers 2022; (Q1, IF: 7.555)
https://link.springer.com/article/10.1007/s00366-021-01559-5
53 P. Phung-Van, Chien H. Thai. A novel size-dependent nonlocal strain gradient isogeometric model for functionally graded carbon nanotube-reinforced composite nanoplates. Engineering with Computers 2021; (Q1, IF: 7.963)
https://link.springer.com/article/10.1007/s00366-021-01353-3
52 P. Phung-Van, AJM. Ferreira, H. Nguyen-Xuan, Chien H. Thai. Scale-dependent nonlocal strain gradient isogeometric analysis of metal foam nanoscale plates with various porosity distributions. Composite Structures 2021; 268:113949 (Q1, IF: 5.407)
https://www.sciencedirect.com/science/article/abs/pii/S0263822321004098
51 P. Phung-Van, QX. Lieu, AJM. Ferreira, Chien H. Thai. A refined nonlocal isogeometric model for multilayer functionally graded graphene platelet-reinforced composite nanoplates. Thin-Walled Structures 2021; 164:107862 (Q1, IF: 4.442)
https://www.sciencedirect.com/science/article/abs/pii/S0263823121002664
50 CH. Thai, AJM. Ferreira, H. Nguyen-Xuan, P. Phung-Van. A size dependent meshfree model for functionally graded plates based on the nonlocal strain gradient theory. Composite Structures 2021; 272:114169 (Q1, IF: 5.138)
https://www.sciencedirect.com/science/article/abs/pii/S0263822321006310
49             CH. Thai, AJM. Ferreira, H. Nguyen-Xuan, LB. Nguyen, P. Phung-Van. A nonlocal strain gradient analysis of laminated composites and sandwich nanoplates using meshfree approach. Engineering with Computers 2021 (Q1, IF: 7.963)
https://link.springer.com/article/10.1007/s00366-021-01501-9
48 P. Phung-Van, AJM. Ferreira, H. Nguyen-Xuan, CH. Thai. A nonlocal strain gradient isogeometric nonlinear analysis of nanoporous metal foam plates. Engineering Analysis with Boundary Elements 2021; 130:58-68 (Q1, IF: 2.964)
https://www.sciencedirect.com/science/article/abs/pii/S0955799721001314
47 CH. Thai, H. Nguyen-Xuan, LB. Nguyen, P. Phung-Van. A modified strain gradient meshfree approach for functionally graded microplates. Engineering with Computers 2021 (Q1, IF: 7.963)
https://link.springer.com/article/10.1007/s00366-021-01493-6
46 CH. Thai, LB. Nguyen, H. Nguyen-Xuan, P. Phung-Van. Size-dependent nonlocal strain gradient modeling of hexagonal beryllium crystal nanoplates. International Journal of Mechanics and Materials in Design 2021; 1-15 (Q1, IF: 4.011)
https://link.springer.com/article/10.1007/s10999-021-09561-x 
45 P. Phung-Van, AJM. Ferreira, Chien H. Thai. Computational optimization for porosity-dependent isogeometric analysis of functionally graded sandwich nanoplates. Composite Structures 2020; 239:112029 (Q1, IF: 4.829)
https://www.sciencedirect.com/science/article/pii/S0263822319339650
44 Chien H. Thai, AJM. Ferreira, P. Phung-Van. A nonlocal strain gradient isogeometric model for free vibration and bending analyses of functionally graded plates. Composite Structures 2020; 251:112634 (Q1, IF: 4.829)
https://www.sciencedirect.com/science/article/pii/S026382232030934X
43 P. Phung-Van, Chien H. Thai, M. Abdel-Wahab, H. Nguyen-Xuan. Optimal design of FG sandwich nanoplates using size-dependent isogeometric analysis. Mechanics of Materials 2020; 143:103277 (Q1, IF: 2.958)
https://www.sciencedirect.com/science/article/pii/S0167663619305320
42             CH Thai, AJM. Ferreira, P Phung-Van. Free vibration analysis of functionally graded anisotropic microplates using modified strain gradient theory. Engineering Analysis with Boundary Elements 2020; 117:284-298 (Q1, IF: 2.243)
https://www.sciencedirect.com/science/article/pii/S0955799720301272
41 CH Thai, P Phung-Van. A meshfree approach using naturally stabilized nodal integration for multilayer FG GPLRC complicated plate structures. Engineering Analysis with Boundary Elements 2020; 117:346-358 (Q1, IF: 2.243)
https://www.sciencedirect.com/science/article/pii/S0955799720301028
40 CH Thai, TD Tran, P Phung-Van. A size-dependent moving Kriging meshfree model for deformation and free vibration analysis of functionally graded carbon nanotube-reinforced composite nanoplates. Engineering Analysis with Boundary Elements 2020; 115:52-63 (Q1, IF: 2.243)
https://www.sciencedirect.com/science/article/pii/S0955799720300461
39 Chien H. Thai, AJM. Ferreira, TD. Tran, P. Phung-Van. A size-dependent quasi-3D isogeometric model for functionally graded graphene platelet-reinforced composite microplates based on the modified couple stress theory. Composite Structures 2020; 234: 111695 (Q1, IF: 4.823)
https://www.sciencedirect.com/science/article/pii/S0263822319330661
38 P. Phung-Van, Chien H. Thai, AJM. Ferreira, T. Rabczuk. Isogeometric nonlinear transient analysis of porous FGM plates subjected to hygro-thermo-mechanical loads. Thin-Walled Structures 2020; 148: 106497 (Q1, IF: 3.488)
https://www.sciencedirect.com/science/article/pii/S0263823119302757
37 P. Phung-Van, Chien H. Thai, H. Nguyen-Xuan, M. Abdel-Wahab. Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis. Composites Part B: Engineering 2019; 164:215-225 (Q1, IF: 6.864)
https://www.sciencedirect.com/science/article/pii/S1359836818324132
36 P. Phung-Van, CH. Thai, H. Nguyen-Xuan, M. Abdel-Wahab. An isogeometric approach of static and free vibration analyses for porous FG nanoplates. European Journal of Mechanics-A/Solids 2019; 78: 103851 (Q1, IF: 2.931)
https://www.sciencedirect.com/science/article/pii/S0997753818306296
35 CH. Thai, AJM. Ferreira, P. Phung-Van. Size dependent free vibration analysis of multilayer functionally graded GPLRC microplates based on modified strain gradient theory. Composites Part B: Engineering 2019; 169:174-188 (Q1, IF: 6.864)
https://www.sciencedirect.com/science/article/pii/S1359836818342203
34 CH. Thai, AJM. Ferreira, TD. Tran, P. Phung-Van. Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation. Composite Structures 2019; 220:749-759 (Q1, IF: 4.829)
https://www.sciencedirect.com/science/article/pii/S0263822318347135
33 H. Nguyen-Ngoc, P. Phung-Van, BL. Dang, H. Nguyen-Xuan, MA Wahab. Static and dynamic analyses of three-dimensional hollow concrete block revetments using polyhedral finite element method. Applied Ocean Research 2019; 88:15-28 (Q1, IF: 2.436)
https://www.sciencedirect.com/science/article/pii/S0141118718306989
32 P. Phung-Van, Cuong-Le Thanh, H. Nguyen-Xuan, M. Abdel-Wahab. Nonlinear transient isogeometric analysis of FG-CNTRC nanoplates in thermal environments. Composite Structures 2018; 201:882-892 (Q1, IF: 4.829)
https://www.sciencedirect.com/science/article/pii/S026382231830936X
31 T. Vu-Huu, P. Phung-Van, Chien H. Thai, H. Nguyen-Xuan, M. Abdel-Wahab. A polytree-based adaptive polygonal finite element method for topology optimization of fluid-submerged breakwater interaction. Computers and Mathematics with Applications 2018; 76(5):1198-1218 (Q1, IF: 2.811)
https://www.sciencedirect.com/science/article/pii/S0898122118303328
30 Cuong-Le Thanh, P. Phung-Van, Chien H. Thai, H. Nguyen-Xuan, M. Abdel-Wahab. Isogeometric analysis of functionally graded carbon nanotube reinforced composite nanoplates using modified couple stress theory. Composite Structures 2018; 184:633-649 (Q1, IF: 4.829)
http://www.sciencedirect.com/science/article/pii/S0263822317324601
29 P. Phung-Van, AJM. Ferreira, H. Nguyen-Xuan, M. Abdel-Wahab. An isogeometric approach for size-dependent geometrically nonlinear transient analysis of functionally graded nanoplates. Composites Part B: Engineering 2017; 118:125-134 (Q1, IF: 6.864)
http://www.sciencedirect.com/science/article/pii/S1359836817302524
28 P. Phung-Van, Qui X. Lieu, H. Nguyen-Xuan, M. Abdel-Wahab. Size-dependent isogeometric analysis of functionally graded carbon nanotube-reinforced composite nanoplates. Composite Structures 2017; 166:120-135 (Q1, IF: 4.829)
http://www.sciencedirect.com/science/article/pii/S0263822316324151
27 P. Phung-Van, Loc V. Tran, AJM. Ferreira, H. Nguyen-Xuan, M. Abdel-Wahab. Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads. Nonlinear Dynamics 2017; 87:879-894 (Q1, IF: 4.604)
http://link.springer.com/article/10.1007/s11071-016-3085-6
26 Loc V. Tran, P. Phung-Van, J. Lee, M. Abdel-Wahab, H. Nguyen-Xuan. Isogeometric analysis for nonlinear thermomechanical stability of functionally graded plates. Composite Structures 2016; 140:655-667 (Q1, IF: 4.829)
http://www.sciencedirect.com/science/article/pii/S0263822316000131
25 S. Nguyen-Hoang, P. Phung-Van, S. Natarajan, HG. Kim. A combined scheme of edge-based and node-based smoothed finite element methods for Reissner–Mindlin flat shells. Engineering with Computers 2016; 32:267-284 (Q1, IF: 3.551)
http://link.springer.com/article/10.1007/s00366-015-0416-z
24 P. Phung-Van, LB. Nguyen, Loc V. Tran, TD. Dinh, Chien H. Thai, SPA. Bordas, M. Abdel-Wahab, H. Nguyen-Xuan. An efficient computational approach for control of nonlinear transient responses of smart piezoelectric composite plates. International Journal of Non-Linear Mechanics 2015; 76:190-202 (Q1, IF: 2.225)
http://www.sciencedirect.com/science/article/pii/S0020746215001134
23 P. Phung-Van, M. Abdel-Wahab, KM. Liew, SPA. Bordas, H. Nguyen-Xuan. Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory. Composite Structures 2015; 123:137-149 (Q1, IF: 4.829)
http://www.sciencedirect.com/science/article/pii/S0263822314006771
22 P. Phung-Van, L. De Lorenzis, Chien H. Thai, M. Abdel-Wahab, H. Nguyen-Xuan. Analysis of laminated composite plates integrated with piezoelectric sensors and actuators using higher-order shear deformation theory and isogeometric finite elements. Computational Materials Science 2015; 96:495-505 (Q1, IF: 2.644)
http://www.sciencedirect.com/science/article/pii/S0927025614003243
21 P. Phung-Van, T. Nguyen-Thoi, T. Bui-Xuan, Q. Lieu-Xuan. A cell-based smoothed three-node Mindlin plate element (CS-FEM-MIN3) based on the C0-type higher-order shear deformation for geometrically nonlinear analysis of laminated composite plates. Computational Materials Science 2015; 96:549-558 (Q1, IF: 2.644)
http://www.sciencedirect.com/science/article/pii/S0927025614002857
20 T. Nguyen-Thoi, P. Phung-Van, MH. Nguyen-Thoi, H. Dang-Trung. An upper-bound limit analysis of Mindlin plates using CS-DSG3 method and second-order cone programming. Journal of Computational and Applied Mathematics 2015; 281:32-48 (Q2, IF: 1.883)
http://www.sciencedirect.com/science/article/pii/S0377042714005470
19 T. Nguyen-Thoi, P. Phung-Van, V. Ho-Huu, L. Le-Anh. An edge-based smoothed finite element method (ES-FEM) for dynamic analysis of 2D Fluid-Solid interaction problems. KSCE Journal of Civil Engineering 2015; 19:641-650 (Q2, IF: 1.428)
http://link.springer.com/article/10.1007/s12205-015-0293-4
18 P. Phung-Van, T. Nguyen-Thoi, H. Luong-Van, Q. Lieu-Xuan. Geometrically nonlinear analysis of functionally graded plates using a cell-based smoothed three-node plate element (CS-MIN3) based on the C0–HSDT. Computer Methods in Applied Mechanics and Engineering 2014; 270: 15–36 (Q1, IF: 4.821)
http://www.sciencedirect.com/science/article/pii/S0045782513003277
17 P. Phung-Van, T. Nguyen-Thoi, H. Luong-Van, C. Thai-Hoang, H. Nguyen-Xuan. A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) using layerwise deformation theory for dynamic response of composite plates resting on viscoelastic foundation. Computer Methods in Applied Mechanics and Engineering 2014; 272: 138-159 (Q1, IF: 4.821)
http://www.sciencedirect.com/science/article/pii/S0045782514000140
16 P. Phung-Van, Chien. H. Thai, T. Nguyen-Thoi, H. Nguyen-Xuan. Static and free vibration analyses of composite and sandwich plates by an edge-based smoothed discrete shear gap method (ES-DSG3) using triangular elements based on layerwise theory. Composites part B - Engineering 2014; 60: 227-238 (Q1, IF: 6.864)
http://www.sciencedirect.com/science/article/pii/S1359836813007749
15 P. Phung-Van, T. Nguyen-Thoi, H. Dang-Trung, N. Nguyen-Minh. A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) using layerwise theory based on the C0-type higher-order shear deformation for static and free vibration analyses of sandwich and composite plates. Composite Structures 2014; 111: 553-565 (Q1, IF: 4.829)
http://www.sciencedirect.com/science/article/pii/S0263822314000518
14 P. Phung-Van, H. Luong-Van, T. Nguyen-Thoi, H. Nguyen-Xuan. A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) based on the C0-type higher-order shear deformation theory for dynamic responses of Mindlin plates on viscoelastic foundations subjected to a moving sprung vehicle. International Journal for Numerical Methods in Engineering 2014; 98: 988-1014 (Q1, IF: 2.746)
http://onlinelibrary.wiley.com/doi/10.1002/nme.4662/full
13 H. Luong-van, T. Nguyen-Thoi, GR. Liu, P. Phung-Van. A cell-based smoothed finite element method using Mindlin plate element (CS-FEM-MIN3) for dynamic response of composite plates on viscoelastic foundation. Engineering Analysis with Boundary Elements 2014; 42: 8-19 (Q1, IF: 2.243)
http://www.sciencedirect.com/science/article/pii/S0955799713002439
12 T. Nguyen-Thoi, P. Phung-Van, S. Nguyen-Hoang, Q. Lieu-Xuan. A smoothed coupled NS/nES-FEM for dynamic analysis of 2D fluid-solid interaction problems. Applied Mathematics and Computation 2014; 232: 324-346 (Q1, IF: 3.092)
http://www.sciencedirect.com/science/article/pii/S0096300314000897
11 T. Nguyen-Thoi, T. Rabczuk, T. Lam-Phat, V. Ho-Huu, P. Phung-Van. Free vibration analysis of cracked Mindlin plate using an extended cell-based smoothed discrete shear gap method (XCS-DSG3). Theoretical and Applied Fracture Mechanics 2014; 72:150-163 (Q1, IF: 2.848) http://www.sciencedirect.com/science/article/pii/S016784421400041X
10 T. Nguyen-Thoi, P. Phung-Van, S. Nguyen-Hoang, Q. Lieu-Xuan. A coupled alpha-FEM for dynamic analyses of 2D fluid-solid interaction problems. Journal of Computational and Applied Mathematics 2014; 271:130-049 (Q2, IF: 1.883)
http://www.sciencedirect.com/science/article/pii/S037704271400185X
9 T. Nguyen-Thoi, T. Bui-Xuan, P. Phung-Van, S. Nguyen-Hoang, H. Nguyen-Xuan. An edge-based smoothed three-node Mindlin plate element (ES-MIN3) for static and free vibration analyses of plates. KSCE Journal of Civil Engineering 2014; 18:1072-1082 (Q2, IF: 1.428)
http://link.springer.com/article/10.1007/s12205-014-0002-8
8 P. Phung-Van, T. Nguyen-Thoi, T. Le-Dinh, H. Nguyen-Xuan. Static, free vibration analyses and dynamic control of composite plates integrated with piezoelectric sensors and actuators by the cell-based smoothed discrete shear gap method (CS-FEM-DSG3). Smart Materials and Structures 2013; 22: 095026 (Q1, IF: 3.543)
http://iopscience.iop.org/article/10.1088/0964-1726/22/9/095026
7 P. Phung-Van, T. Nguyen-Thoi, Loc V. Tran, H. Nguyen-Xuan. A cell-based smoothed discrete shear gap method (CS-DSG3) based on the C0-type higher-order shear deformation theory for static and free vibration analyses of functionally graded plates. Computational Materials Science 2013; 79:857-872 (Q1, IF: 2.644)
http://www.sciencedirect.com/science/article/pii/S0927025613003248
6 T. Nguyen-Thoi, P. Phung-Van, C. Thai-Hoang, H. Nguyen-Xuan. A cell-based smoothed discrete shear gap method (CS-DSG3) using triangular elements for static and free vibration analyses of shell structures. International Journal of Mechanical Sciences 2013; 74: 32-45 (Q1, IF: 4.134)
http://www.sciencedirect.com/science/article/pii/S002074031300129X
5 T. Nguyen-Thoi, T. Bui-Xuan, P. Phung-Van, H. Nguyen-Xuan, P. Ngo-Thanh. Static, free vibration and buckling analyses of stiffened plates by CS-FEM-DSG3 using triangular elements. Computers and Structures 2013; 125: 100-113 (Q1, IF: 3.354)
http://www.sciencedirect.com/science/article/pii/S0045794913001582
4 T. Nguyen-Thoi, P. Phung-Van, T. Rabczuk, H. Nguyen-Xuan, C. Le-Van. Free and forced vibration analysis using the n-sided polygonal cell-based smoothed finite element method (nCS-FEM). International Journal of Computational Methods 2013; 10(1): 1340008 (Q2, IF: 1.221)
http://www.worldscientific.com/doi/abs/10.1142/S0219876213400082
3 T. Nguyen-Thoi, P. Phung-Van, T. Rabczuk, H. Nguyen-Xuan, C. Le-Van. An application of the ES-FEM in solid domain for dynamic analysis of 2D fluid-solid interaction problems. International Journal of Computational Methods 2013; 10(1): 1340003 (Q2, IF: 1.221)
http://www.worldscientific.com/doi/abs/10.1142/S0219876213400033
2 T. Nguyen-Thoi, P. Phung-Van, H. Luong-Van, H. Nguyen-Van, H. Nguyen-Xuan. A cell-based smoothed three-node Mindlin plate element (CS-MIN3) for static and free vibration analyses of plates. Computational Mechanics 2013; 51 (1): 65-81 (Q1, IF: 3.159)
http://link.springer.com/article/10.1007/s00466-012-0705-y
1 T. Nguyen-Thoi, P. Phung-Van, H. Nguyen-Xuan, C. Thai-Hoang. A cell-based smoothed discrete shear gap method using triangular elements for static and free vibration analyses of Reissner-Mindlin plates. International Journal for Numerical Methods in Engineering 2012; 91(7): 705-741 (Q1, IF: 2.746)
http://onlinelibrary.wiley.com/doi/10.1002/nme.4289/abstract
2.5 Bài báo đăng trên tạp chí quốc tế
3 PT. Hung, CH. Thai, P. Phung-Van. A moving Kriging meshfree approach for free vibration and buckling analyses of porous metal foam plates. Journal of Micromechanics and Molecular Physics 2023; 8 (01), 45-59
https://www.worldscientific.com/doi/abs/10.1142/S2424913022450011
2 CH. Thai, P. Phung-Van, H. Nguyen-Xuan. Buckling analysis of FG GPLRC plate using a naturally stabilized nodal integration meshfree method. Modern Mechanics and Applications 2022; 189-202.
https://link.springer.com/chapter/10.1007/978-981-16-3239-6_15
1 T. Nguyen-Thoi, H. Luong-Van, P. Phung-Van, T. Rabczuk, D. Tran-Trung. Dynamic responses of composite plates on the Pasternak foundation subjected to a moving mass by a cell-based smoothed discrete shear gap (CS-FEM-DSG3) Method. International Journal of Composite Materials 2013; 3(6A): 19-27
http://article.sapub.org/10.5923.s.cmaterials.201309.03.html
2.6 Bài báo đăng trên tạp chí khoa học quốc gia
6 P. Phung-Van, PT. Hung, H. Nguyen-Gia, H. Nguyen-Xuan. Free vibration analysis of functionally graded triply periodic minimal surface plates using a first order shear deformation theory and meshfree method. Journal of Advanced Engineering and Computation 2023; 7 (4), 237-246
https://jaec.vn/index.php/JAEC/article/view/441
5 PT. Hung, T. Nguyen-Thanh, P. Phung-Van, H. Nguyen-Gia. Isogeometric vibration of the magneto-electro-elastic sandwich plate with functionally graded carbon nanotube reinforced composite core. Journal of Advanced Engineering and Computation 2023; 7 (3), 187-203
https://jaec.vn/index.php/JAEC/article/view/428
4 PT. Hung, P. Phung-Van. Isogeometric Buckling Analysis of The Magneto-electro-elastic Foam Plates Resting on An Elastic Foundation. Journal of Advanced Engineering and Computation 2023; 7 (1), 42-56
https://jaec.vn/index.php/JAEC/article/view/398
3 Pham Tan Hung, Phung Van Phuc. A Two Variable Refined Plate Theory for Isogeometric Vibration Analysis of The Functionally Graded Piezoelectric Microplates with Porosities. Journal of Advanced Engineering and Computation 2022; 6(4), 291-305
https://jaec.vn/index.php/JAEC/article/view/393
2 Phung Van Phuc, Chau Nguyen Khanh, Chau Nguyen Khai, Nguyen Xuan Hung. Free vibration analysis of porous nanoplates using NURBS formulations. Vietnam Journal of Science and Technology 2020; 58(3): 379-389
 http://www.vjs.ac.vn/index.php/jst/article/view/14500
1 Nguyen Thoi Trung, Phung Van Phuc, Tran Viet Anh, Nguyen Tran Chan. Dynamic analysis of Mindlin plates on viscoelastic foundations under a moving vehicle by CSMIN3 based on C0- type higher-order shear deformation theory. Vietnam Journal of Mechanics 2014; 36:61– 75.
http://vjs.ac.vn/index.php/vjmech/article/view/2974 
 
 (Cập nhật tháng 7/2024)


 
14617998
Các tin khác
DANH SÁCH NHÂN SỰ KHOA XÂY DỰNG Đội ngũ Giảng viên - Nghiên cứu viên - Nhân viên Khoa Xây dựng gồm có 9 Tiến sĩ, 12 Thạc sĩ, 02 Cử nhân.
TS. NGUYỄN VIỆT TUẤN Tổ trưởng Bộ môn Thi công Email: nv.tuan@hutech.edu.vn
TS. KHỔNG TRỌNG TOÀN Giảng viên, Bộ môn Kết cấu công trình Email: kt.toan@hutech.edu.vn
TS. NGUYỄN VĂN GIANG Giảng viên, Bộ môn Kết cấu công trình Email: nv.giang@hutech.edu.vn
ThS. TRẦN TUẤN KIỆT Giảng viên, Bộ môn Kinh tế & Quản lý xây dựng Email: tt.kiet@hutech.edu.vn
ThS. NGUYỄN NGỌC QUẢNG Giám đốc Trung tâm Thí nghiệm Địa kỹ thuật và Vật liệu xây dựng LAS-XD 108 Email: nn.quang@hutech.edu.vn
×